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Intracranial intra-axial brain mass-like lesions have a wide differential diagnosis including malignant 

and non-malignant (tumefactive) disorders. Despite advances in the application of multiparametric 

MRI [1, 2], determining their cause can be challenging. Accurate diagnosis of tumorous versus 

tumefactive lesions supports the effective work-up of such patients, relying on the differentiation 

between the malignant and non-malignant lesions. Traditionally, this distinction has been reliant on 

visual interpretation by experienced (neuro)radiologists, a process that even in experienced hands 

remains subjective. An automated and objective approach that would help differentiate between 

non-malignant and malignant mass-like lesions would facilitate patient referral. 

In the current issue of European Radiology, Shin and colleagues [3] tested a three-stage, deep 

learning-based approach to differentiate between malignant and non-malignant intra-axial mass-like 

lesions to determine an automated referral suggestion for patient presenting in an emergency-room 

setting. At each stage, deep neural networks make use of multi-parametric MRI scans of patients 

with a range of diseases to reach the final referral suggestion. In detail, the authors initially trained a 

U-NET-based lesion segmentation network on co-registered, post-contrast T1-weighted (T1CE) and 

Fluid-Attenuation-Recovery (FLAIR) sequences to create segmentation maps of contrast-enhancing 

lesions (CEL), non-enhancing FLAIR hyperintense lesions (NEL), the necrotic portion and the non-

lesion background. These segmentation maps were afterwards combined with co-registered T1CE, 

FLAIR, pre-contrast T1-weighted (T1W1), diffusion weighted-imaging (DWI) images and apparent 

diffusion coefficient (ADC) maps. Following a hierarchical classification approach, two independent 

convolutional networks were trained to separate patient scans into malignant or non-malignant 

cases, and then provide a referral suggestion - either surgery or systemic work-up for patients with 

malignant lesions; medical treatment or conservative management for patients with non-malignant 

lesions. Using layer-wise-propagation [4], a post-training explainability technique that was applied 

on the tumour vs. non-tumour classification network, pixel-based heatmaps of relevance were 

generated to offer a visual representation of significant locations in the MR sequences that mostly 

affected the network decision. 

Networks were trained on a dataset of 747 patients (mean age 53.59 years, 328 females) with 

approximately 75% malignant lesions (mean age 54.38 years, 263 females) and 25% non-malignant 

lesions (mean age 51.16 years, 65 females). Clinical validation was performed in an independent 

cohort of 130 patients (mean age 57.57 years, 67 females) as external test set with approximately 

70% malignant lesions (mean age 59.65 years, 41 females) and 30% non-malignant lesions (mean 

age 52.53 years, 26 females) . The performance of the classification networks was compared to the 

performance of two expert neuroradiologists and four radiology residents. The average classification 

performance of the neural network in discriminating between malignant and non-malignant lesions 

and in making clinical referral suggestions on test set patients was on par with the performance of 

human readers. The primary convolutional network (accuracy of 87.7%) slightly outperformed both 

groups of readers (neuroradiologists accuracy 87.3% and radiology residents accuracy 87.5%) in 



classifying patients with malignant versus non-malignant lesions, while the Area-Under-the-Curve 

value was 0.90 for the neural network and 0.85 on average for all human readers. The clinical 

referral suggestion network had an accuracy (72.3%) lying in between the performance of the 

radiology residents (70.2%) and neuroradiologists (77.3%). It is critical to observe the accuracy 

performance of radiology resident Reader 4 in the two tasks, who significantly underperformed. 

Mean human reader performance was decreased and brought closer to the performance of the 

automated method. 

Thus far, the closest study to this work, proposing an automated diagnosis of brain lesion types has 

been the study by Rauscheker and colleagues [5]. By mimicking the way radiologists tackle such 

tasks and exploiting prior knowledge in the extraction of carefully selected features, they were able 

to set the ground for the employment of an automated diagnostic model.  The approach of 

Rauscheker and colleagues depends on a priori selected segmentation features fed to a network, 

while the study of Shin et al. used all available raw MR images. The latter offers an end-to-end 

automated pipeline for the referral suggestion but opens this black box by the addition of an 

explainable component. With information being made available from each stage of the pipeline, i.e. 

the segmentation maps, classification decisions and relevance heatmaps, the user is able to 

understand the “reasoning” behind the computerised decision-making. An additional advantage of 

the approach by Shin et al. is the ability to rapidly extract neural-network-derived output, thus 

avoiding a time-consuming manual decision-making process. The individual network classification 

performance suggests that it is possible to establish a method that will might outperform the 

average expert human reader. This cannot be easily achieved though.  Currently, AI-based models 

used in medicine require expert input and are far from being exclusively trusted. Thus, the ideal next 

step towards establishing such approaches should be a hybrid setup, where automated models are 

combined with decisions made by practitioners and assessed as supporting computerised tools 

rather than an autonomous replacement of the human readers. 

This study does come with certain limitations. External testing was performed using scans from a 

single cohort, while many sub-categories of lesions present in the training set were absent from the 

test set, posing the question of how well the suggested methodology will be able to generalise to 

multi-site cohorts and specific lesion subtypes. For example, the Rauschecker study [5] encompassed 

a much wider range of pathology in the differential diagnosis, including abscesses, leukodystrophy 

and others. Further research will be needed to improve the performance of the AI model, starting 

from the addition of multi-site cohorts to add external validity to the study. Ideally, subgroups of 

disease categories which are not seen on the training cohort can be included, to simulate a real-

world setup and further test the generalisation capabilities of the classification networks. To 

determine the true value of this study, additional work would be needed, evaluating the efficacy of 

the automated method, most importantly as a supporting tool for radiologists – the most likely 

clinical implementation scenario. 

A realistic assessment of the current landscape shows us that the gap between automated 

diagnostic models and human readers is narrowing but still visible: neither the method of Shin and 

colleagues nor any other related studies prove that we can solely rely on computerised models to 

diagnose mass-like lesion types. What this work does prove, is that end-to-end models can be both 

interpretable and approach the performance of radiology residents and even fellow-level decisions. 

We can only be encouraged by these findings and seek further technical development that will offer 

the best possible computerised radiology assistance.  
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